为防止广告,目前nocow只有登录用户能够创建新页面。如要创建页面请先登录/注册(新用户需要等待1个小时才能正常使用该功能)。

Tarjan算法

来自NOCOW
跳转到: 导航, 搜索

感谢Faint.Wisdom讲解求最近公共祖先(LCA)的Tarjan算法!

[编辑] 求最近公共祖先(LCA)的Tarjan算法

首先,Tarjan算法是一种离线算法,也就是说,它要首先读入所有的询问(求一次LCA叫做一次询问),然后并不一定按 照原来的顺序处理这些询问。而打乱这个顺序正是这个算法的巧妙之处。看完下文,你便会发现,如果偏要按原来的顺序 处理询问,Tarjan算法将无法进行。

Tarjan算法是利用并查集来实现的。它按DFS的顺序遍历整棵树。对于每个结点x,它进行以下几步操作:


  • 计算当前结点的层号lv[x],并在并查集中建立仅包含x结点的集合,即root[x]:=x。


  • 依次处理与该结点关联的询问。


  • 递归处理x的所有孩子。


  • root[x]:=root[father[x]](对于根结点来说,它的父结点可以任选一个,反正这是最后一步操作了)。


现在我们来观察正在处理与x结点关联的询问时并查集的情况。由于一个结点处理完毕后,它就被归到其父结点所在的集合,所以在已经处理过的结点中(包括 x本身),x结点本身构成了与x的LCA是x的集合,x结点的父结点及以x的所有已处理的兄弟结点为根的子树构成了与x的LCA是father[x]的集合,x结点的父结点的父结点及以x的父结点的所有已处理的兄弟结点为根的子树构成了与x的LCA是father[father[x]]的集合……(上面这几句话如果看着别扭,就分析一下句子成分,也可参照右面的图)假设有一个询问(x,y)(y是已处理的结点),在并查集中查到y所属集合的根是z,那么z 就是x和y的LCA,x到y的路径长度就是lv[x]+lv[y]-lv[z]*2。累加所有经过的路径长度就得到答案。


现在还有一个问题:上面提到的询问(x,y)中,y是已处理过的结点。那么,如果y尚未处理怎么办?其实很简单,只要在询问列表中加入两个询问(x, y)、(y,x),那么就可以保证这两个询问有且仅有一个被处理了(暂时无法处理的那个就pass掉)。而形如(x,x)的询问则根本不必存储。


如果在并查集的实现中使用路径压缩等优化措施,一次查询的复杂度将可以认为是常数级的,整个算法也就是线性的了。

[1]

个人工具