为防止广告,目前nocow只有登录用户能够创建新页面。如要创建页面请先登录/注册(新用户需要等待1个小时才能正常使用该功能)。

Code:Splay Tree/C

来自NOCOW
(跳转自Splay Tree C)
跳转到: 导航, 搜索
/*
				An implementation of top-down splaying
					D. Sleator <sleator@cs.cmu.edu>
								 March 1992
 
  "Splay trees", or "self-adjusting search trees" are a simple and
  efficient data structure for storing an ordered set.  The data
  structure consists of a binary tree, without parent pointers, and no
  additional fields.  It allows searching, insertion, deletion,
  deletemin, deletemax, splitting, joining, and many other operations,
  all with amortized logarithmic performance.  Since the trees adapt to
  the sequence of requests, their performance on real access patterns is
  typically even better.  Splay trees are described in a number of texts
  and papers [1,2,3,4,5].
 
  The code here is adapted from simple top-down splay, at the bottom of
  page 669 of [3].  It can be obtained via anonymous ftp from
  spade.pc.cs.cmu.edu in directory /usr/sleator/public.
 
  The chief modification here is that the splay operation works even if the
  item being splayed is not in the tree, and even if the tree root of the
  tree is NULL.  So the line:
 
							  t = splay(i, t);
 
  causes it to search for item with key i in the tree rooted at t.  If it's
  there, it is splayed to the root.  If it isn't there, then the node put
  at the root is the last one before NULL that would have been reached in a
  normal binary search for i.  (It's a neighbor of i in the tree.)  This
  allows many other operations to be easily implemented, as shown below.
 
  [1] "Fundamentals of data structures in C", Horowitz, Sahni,
	   and Anderson-Freed, Computer Science Press, pp 542-547.
  [2] "Data Structures and Their Algorithms", Lewis and Denenberg,
	   Harper Collins, 1991, pp 243-251.
  [3] "Self-adjusting Binary Search Trees" Sleator and Tarjan,
	   JACM Volume 32, No 3, July 1985, pp 652-686.
  [4] "Data Structure and Algorithm Analysis", Mark Weiss,
	   Benjamin Cummins, 1992, pp 119-130.
  [5] "Data Structures, Algorithms, and Performance", Derick Wood,
	   Addison-Wesley, 1993, pp 367-375.
 
  The following code was written by Daniel Sleator, and is released
  in the public domain.
*/
 
#include <stdio.h>
 
int size;  /* number of nodes in the tree */
		   /* Not actually needed for any of the operations */
 
typedef struct tree_node Tree;
struct tree_node {
	Tree * left, * right;
	int item;
};
 
Tree * splay (int i, Tree * t) {
/* Simple top down splay, not requiring i to be in the tree t.  */
/* What it does is described above.							 */
	Tree N, *l, *r, *y;
	if (t == NULL) return t;
	N.left = N.right = NULL;
	l = r = &N;
 
	for (;;) {
		if (i < t->item) {
			if (t->left == NULL) break;
			if (i < t->left->item) {
				y = t->left;						   /* rotate right */
				t->left = y->right;
				y->right = t;
				t = y;
				if (t->left == NULL) break;
			}
			r->left = t;							   /* link right */
			r = t;
			t = t->left;
		} else if (i > t->item) {
			if (t->right == NULL) break;
			if (i > t->right->item) {
				y = t->right;						  /* rotate left */
				t->right = y->left;
				y->left = t;
				t = y;
				if (t->right == NULL) break;
			}
			l->right = t;							  /* link left */
			l = t;
			t = t->right;
		} else {
			break;
		}
	}
	l->right = t->left;								/* assemble */
	r->left = t->right;
	t->left = N.right;
	t->right = N.left;
	return t;
}
 
/* Here is how sedgewick would have written this.					*/
/* It does the same thing.										   */
Tree * sedgewickized_splay (int i, Tree * t) {
	Tree N, *l, *r, *y;
	if (t == NULL) return t;
	N.left = N.right = NULL;
	l = r = &N;
 
	for (;;) {
		if (i < t->item) {
			if (t->left != NULL && i < t->left->item) {
				y = t->left; t->left = y->right; y->right = t; t = y;
			}
			if (t->left == NULL) break;
			r->left = t; r = t; t = t->left;
		} else if (i > t->item) {
			if (t->right != NULL && i > t->right->item) {
				y = t->right; t->right = y->left; y->left = t; t = y;
			}
			if (t->right == NULL) break;
			l->right = t; l = t; t = t->right;
		} else break;
	}
	l->right=t->left; r->left=t->right; t->left=N.right; t->right=N.left;
	return t;
}
 
Tree * insert(int i, Tree * t) {
/* Insert i into the tree t, unless it's already there.	*/
/* Return a pointer to the resulting tree.				 */
	Tree * new;
 
	new = (Tree *) malloc (sizeof (Tree));
	if (new == NULL) {
		printf("Ran out of space\n");
		exit(1);
	}
	new->item = i;
	if (t == NULL) {
		new->left = new->right = NULL;
		size = 1;
		return new;
	}
	t = splay(i,t);
	if (i < t->item) {
		new->left = t->left;
		new->right = t;
		t->left = NULL;
		size ++;
		return new;
	} else if (i > t->item) {
		new->right = t->right;
		new->left = t;
		t->right = NULL;
		size++;
		return new;
	} else { /* We get here if it's already in the tree */
			 /* Don't add it again					  */
		free(new);
		return t;
	}
}
 
Tree * delete(int i, Tree * t) {
/* Deletes i from the tree if it's there.			   */
/* Return a pointer to the resulting tree.			  */
	Tree * x;
	if (t==NULL) return NULL;
	t = splay(i,t);
	if (i == t->item) {			   /* found it */
		if (t->left == NULL) {
			x = t->right;
		} else {
			x = splay(i, t->left);
			x->right = t->right;
		}
		size--;
		free(t);
		return x;
	}
	return t;						 /* It wasn't there */
}
 
void main() {
/* A sample use of these functions.  Start with the empty tree,		 */
/* insert some stuff into it, and then delete it						*/
	Tree * root;
	int i;
	root = NULL;			  /* the empty tree */
	size = 0;
	for (i = 0; i < 1024; i++) {
		root = insert((541*i) & (1023), root);
	}
	for (i = 0; i < 1024; i++) {
		root = delete((541*i) & (1023), root);
	}
	printf("size = %d\n", size);
}
        #include "splay.h"
        #include <stdlib.h>
        #include "fatal.h"
 
        struct SplayNode
        {
            ElementType Element;
            SplayTree      Left;
            SplayTree      Right;
        };
 
        typedef struct SplayNode *Position;
        static Position NullNode = NULL;  /* Needs initialization */
 
        SplayTree
        Initialize( void )
        {
            if( NullNode == NULL )
            {
                NullNode = malloc( sizeof( struct SplayNode ) );
                if( NullNode == NULL )
                    FatalError( "Out of space!!!" );
                NullNode->Left = NullNode->Right = NullNode;
            }
            return NullNode;
        }
 
        static SplayTree Splay( ElementType Item, Position X );
 
        SplayTree
        MakeEmpty( SplayTree T )
        {
            if( T != NullNode )
            {
                MakeEmpty( T->Left );
                MakeEmpty( T->Right );
                free( T );
            }
            return NullNode;
        }
 
        void
        PrintTree( SplayTree T )
        {
            if( T != NullNode )
            {
                PrintTree( T->Left );
                printf( "%d ", T->Element );
                PrintTree( T->Right );
            }
        }
 
        SplayTree
        Find( ElementType X, SplayTree T )
        {
            return Splay( X, T );
        }
 
        SplayTree
        FindMin( SplayTree T )
        {
            return Splay( NegInfinity, T );
        }
 
        SplayTree
        FindMax( SplayTree T )
        {
            return Splay( Infinity, T );
        }
 
        /* This function can be called only if K2 has a left child */
        /* Perform a rotate between a node (K2) and its left child */
        /* Update heights, then return new root */
 
        static Position
        SingleRotateWithLeft( Position K2 )
        {
            Position K1;
 
            K1 = K2->Left;
            K2->Left = K1->Right;
            K1->Right = K2;
 
            return K1;  /* New root */
        }
 
        /* This function can be called only if K1 has a right child */
        /* Perform a rotate between a node (K1) and its right child */
        /* Update heights, then return new root */
 
        static Position
        SingleRotateWithRight( Position K1 )
        {
            Position K2;
 
            K2 = K1->Right;
            K1->Right = K2->Left;
            K2->Left = K1;
 
            return K2;  /* New root */
        }
 
/* START: fig12_6.txt */
        /* Top-down splay procedure, */
        /* not requiring Item to be in tree */
 
        SplayTree
        Splay( ElementType Item, Position X )
        {
            static struct SplayNode Header;
            Position LeftTreeMax, RightTreeMin;
 
            Header.Left = Header.Right = NullNode;
            LeftTreeMax = RightTreeMin = &Header;
            NullNode->Element = Item;
 
            while( Item != X->Element )
            {
                if( Item < X->Element )
                {
                    if( Item < X->Left->Element )
                        X = SingleRotateWithLeft( X );
                    if( X->Left == NullNode )
                        break;
                    /* Link right */
                    RightTreeMin->Left = X;
                    RightTreeMin = X;
                    X = X->Left;
                }
                else
                {
                    if( Item > X->Right->Element )
                        X = SingleRotateWithRight( X );
                    if( X->Right == NullNode )
                        break;
                    /* Link left */
                    LeftTreeMax->Right = X;
                    LeftTreeMax = X;
                    X = X->Right;
                }
            }  /* while Item != X->Element */
 
            /* Reassemble */
            LeftTreeMax->Right = X->Left;
            RightTreeMin->Left = X->Right;
            X->Left = Header.Right;
            X->Right = Header.Left;
 
            return X;
        }
/* END */
 
 
 
 
/* START: fig12_7.txt */
        SplayTree
        Insert( ElementType Item, SplayTree T )
        {
            static Position NewNode = NULL;
 
            if( NewNode == NULL )
            {
                NewNode = malloc( sizeof( struct SplayNode ) );
                if( NewNode == NULL )
                    FatalError( "Out of space!!!" );
            }
            NewNode->Element = Item;
 
            if( T == NullNode )
            {
                NewNode->Left = NewNode->Right = NullNode;
                T = NewNode;
            }
            else
            {
                T = Splay( Item, T );
                if( Item < T->Element )
                {
                    NewNode->Left = T->Left;
                    NewNode->Right = T;
                    T->Left = NullNode;
                    T = NewNode;
                }
                else
                if( T->Element < Item )
                {
                    NewNode->Right = T->Right;
                    NewNode->Left = T;
                    T->Right = NullNode;
                    T = NewNode;
                }
                else
                    return T;  /* Already in the tree */
            }
 
            NewNode = NULL;   /* So next insert will call malloc */
            return T;
        }
/* END */
 
 
/* START: fig12_8.txt */
        SplayTree
        Remove( ElementType Item, SplayTree T )
        {
            Position NewTree;
 
            if( T != NullNode )
            {
                T = Splay( Item, T );
                if( Item == T->Element )
                {
                    /* Found it! */
                    if( T->Left == NullNode )
                        NewTree = T->Right;
                    else
                    {
                        NewTree = T->Left;
                        NewTree = Splay( Item, NewTree );
                        NewTree->Right = T->Right;
                    }
                    free( T );
                    T = NewTree;
                }
            }
 
            return T;
        }
 
/* END */
 
        ElementType
        Retrieve( SplayTree T )
        {
            return T->Element;
        }
个人工具