如果发现广告等破坏行为,请尽量将条目恢复到较早的版本而不是把相应内容直接删除,谢谢合作。
基本操作(二叉树)
来自"NOCOW"
/* 二叉树的顺序存储的基本操作(23个) */ #define ClearBiTree InitBiTree /* 在顺序存储结构中,两函数完全一样 */ #define DestroyBiTree InitBiTree /* 在顺序存储结构中,两函数完全一样 */ void InitBiTree(SqBiTree T) { /* 构造空二叉树T。因为T是数组名,故不需要& */ int i; for(i=0;i<MAX_TREE_SIZE;i++) T[i]=Nil; /* 初值为空(Nil在主程中定义) */ } void CreateBiTree(SqBiTree T) { /* 按层序次序输入二叉树中结点的值(字符型或整型), 构造顺序存储的二叉树T */ int i=0; #if CHAR /* 结点类型为字符 */ int l; char s[MAX_TREE_SIZE]; InitBiTree(T); /* 构造空二叉树T */ printf("请按层序输入结点的值(字符),空格表示空结点,结点数≤%d:\n",MAX_TREE_SIZE); gets(s); /* 输入字符串 */ l=strlen(s); /* 求字符串的长度 */ for(;i<l;i++) /* 将字符串赋值给T */ T[i]=s[i]; #else /* 结点类型为整型 */ InitBiTree(T); /* 构造空二叉树T */ printf("请按层序输入结点的值(整型),0表示空结点,输999结束。结点数≤%d:\n",MAX_TREE_SIZE); while(1) { scanf("%d",&T[i]); if(T[i]==999) { T[i]=Nil; break; } i++; } #endif for(i=1;i<MAX_TREE_SIZE;i++) if(T[(i+1)/2-1]==Nil&&T[i]!=Nil) /* 此非根结点(不空)无双亲 */ { printf("出现无双亲的非根结点"form"\n",T[i]); exit(ERROR); } } Status BiTreeEmpty(SqBiTree T) { /* 初始条件:二叉树T存在。操作结果:若T为空二叉树,则返回TRUE,否则FALSE */ if(T[0]==Nil) /* 根结点为空,则树空 */ return TRUE; else return FALSE; } int BiTreeDepth(SqBiTree T) { /* 初始条件:二叉树T存在。操作结果:返回T的深度 */ int i,j=-1; for(i=MAX_TREE_SIZE-1;i>=0;i--) /* 找到最后一个结点 */ if(T[i]!=Nil) break; i++; /* 为了便于计算 */ do j++; while(i>=pow(2,j)); return j; } Status Root(SqBiTree T,TElemType *e) { /* 初始条件:二叉树T存在。操作结果:当T不空,用e返回T的根,返回OK;否则返回ERROR,e无定义 */ if(BiTreeEmpty(T)) /* T空 */ return ERROR; else { *e=T[0]; return OK; } } TElemType Value(SqBiTree T,position e) { /* 初始条件:二叉树T存在,e是T中某个结点(的位置) */ /* 操作结果:返回处于位置e(层,本层序号)的结点的值 */ return T[(int)pow(2,e.level-1)+e.order-2]; } Status Assign(SqBiTree T,position e,TElemType value) { /* 初始条件:二叉树T存在,e是T中某个结点(的位置) */ /* 操作结果:给处于位置e(层,本层序号)的结点赋新值value */ int i=(int)pow(2,e.level-1)+e.order-2; /* 将层、本层序号转为矩阵的序号 */ if(value!=Nil&&T[(i+1)/2-1]==Nil) /* 给叶子赋非空值但双亲为空 */ return ERROR; else if(value==Nil&&(T[i*2+1]!=Nil||T[i*2+2]!=Nil)) /* 给双亲赋空值但有叶子(不空) */ return ERROR; T[i]=value; return OK; } TElemType Parent(SqBiTree T,TElemType e) { /* 初始条件:二叉树T存在,e是T中某个结点 */ /* 操作结果:若e是T的非根结点,则返回它的双亲,否则返回"空" */ int i; if(T[0]==Nil) /* 空树 */ return Nil; for(i=1;i<=MAX_TREE_SIZE-1;i++) if(T[i]==e) /* 找到e */ return T[(i+1)/2-1]; return Nil; /* 没找到e */ } TElemType LeftChild(SqBiTree T,TElemType e) { /* 初始条件:二叉树T存在,e是T中某个结点。操作结果:返回e的左孩子。若e无左孩子,则返回"空" */ int i; if(T[0]==Nil) /* 空树 */ return Nil; for(i=0;i<=MAX_TREE_SIZE-1;i++) if(T[i]==e) /* 找到e */ return T[i*2+1]; return Nil; /* 没找到e */ } TElemType RightChild(SqBiTree T,TElemType e) { /* 初始条件:二叉树T存在,e是T中某个结点。操作结果:返回e的右孩子。若e无右孩子,则返回"空" */ int i; if(T[0]==Nil) /* 空树 */ return Nil; for(i=0;i<=MAX_TREE_SIZE-1;i++) if(T[i]==e) /* 找到e */ return T[i*2+2]; return Nil; /* 没找到e */ } TElemType LeftSibling(SqBiTree T,TElemType e) { /* 初始条件:二叉树T存在,e是T中某个结点 */ /* 操作结果:返回e的左兄弟。若e是T的左孩子或无左兄弟,则返回"空" */ int i; if(T[0]==Nil) /* 空树 */ return Nil; for(i=1;i<=MAX_TREE_SIZE-1;i++) if(T[i]==e&&i%2==0) /* 找到e且其序号为偶数(是右孩子) */ return T[i-1]; return Nil; /* 没找到e */ } TElemType RightSibling(SqBiTree T,TElemType e) { /* 初始条件:二叉树T存在,e是T中某个结点 */ /* 操作结果:返回e的右兄弟。若e是T的右孩子或无右兄弟,则返回"空" */ int i; if(T[0]==Nil) /* 空树 */ return Nil; for(i=1;i<=MAX_TREE_SIZE-1;i++) if(T[i]==e&&i%2) /* 找到e且其序号为奇数(是左孩子) */ return T[i+1]; return Nil; /* 没找到e */ } void Move(SqBiTree q,int j,SqBiTree T,int i) /* InsertChild()用到。加 */ { /* 把从q的j结点开始的子树移为从T的i结点开始的子树 */ if(q[2*j+1]!=Nil) /* q的左子树不空 */ Move(q,(2*j+1),T,(2*i+1)); /* 把q的j结点的左子树移为T的i结点的左子树 */ if(q[2*j+2]!=Nil) /* q的右子树不空 */ Move(q,(2*j+2),T,(2*i+2)); /* 把q的j结点的右子树移为T的i结点的右子树 */ T[i]=q[j]; /* 把q的j结点移为T的i结点 */ q[j]=Nil; /* 把q的j结点置空 */ } void InsertChild(SqBiTree T,TElemType p,int LR,SqBiTree c) { /* 初始条件:二叉树T存在,p是T中某个结点的值,LR为0或1,非空二叉树c与T不相交且右子树为空 */ /* 操作结果: 根据LR为0或1,插入c为T中p结点的左或右子树。p结点的原有左或右子树则成为c的右子树 */ int j,k,i=0; for(j=0;j<(int)pow(2,BiTreeDepth(T))-1;j++) /* 查找p的序号 */ if(T[j]==p) /* j为p的序号 */ break; k=2*j+1+LR; /* k为p的左或右孩子的序号 */ if(T[k]!=Nil) /* p原来的左或右孩子不空 */ Move(T,k,T,2*k+2); /* 把从T的k结点开始的子树移为从k结点的右子树开始的子树 */ Move(c,i,T,k); /* 把从c的i结点开始的子树移为从T的k结点开始的子树 */ } typedef int QElemType; /* 设队列元素类型为整型(序号) */ #include "c3-2.h" /* 链队列 */ #include "bo3-2.c" /* 链队列的基本操作 */ Status DeleteChild(SqBiTree T,position p,int LR) { /* 初始条件:二叉树T存在,p指向T中某个结点,LR为1或0 */ /* 操作结果:根据LR为1或0,删除T中p所指结点的左或右子树 */ int i; Status k=OK; /* 队列不空的标志 */ LinkQueue q; InitQueue(&q); /* 初始化队列,用于存放待删除的结点 */ i=(int)pow(2,p.level-1)+p.order-2; /* 将层、本层序号转为矩阵的序号 */ if(T[i]==Nil) /* 此结点空 */ return ERROR; i=i*2+1+LR; /* 待删除子树的根结点在矩阵中的序号 */ while(k) { if(T[2*i+1]!=Nil) /* 左结点不空 */ EnQueue(&q,2*i+1); /* 入队左结点的序号 */ if(T[2*i+2]!=Nil) /* 右结点不空 */ EnQueue(&q,2*i+2); /* 入队右结点的序号 */ T[i]=Nil; /* 删除此结点 */ k=DeQueue(&q,&i); /* 队列不空 */ } return OK; } void(*VisitFunc)(TElemType); /* 函数变量 */ void PreTraverse(SqBiTree T,int e) { /* PreOrderTraverse()调用 */ VisitFunc(T[e]); if(T[2*e+1]!=Nil) /* 左子树不空 */ PreTraverse(T,2*e+1); if(T[2*e+2]!=Nil) /* 右子树不空 */ PreTraverse(T,2*e+2); } void PreOrderTraverse(SqBiTree T,void(*Visit)(TElemType)) { /* 初始条件:二叉树存在,Visit是对结点操作的应用函数 */ /* 操作结果:先序遍历T,对每个结点调用函数Visit一次且仅一次 */ VisitFunc=Visit; if(!BiTreeEmpty(T)) /* 树不空 */ PreTraverse(T,0); printf("\n"); } void InTraverse(SqBiTree T,int e) { /* InOrderTraverse()调用 */ if(T[2*e+1]!=Nil) /* 左子树不空 */ InTraverse(T,2*e+1); VisitFunc(T[e]); if(T[2*e+2]!=Nil) /* 右子树不空 */ InTraverse(T,2*e+2); } void InOrderTraverse(SqBiTree T,void(*Visit)(TElemType)) { /* 初始条件:二叉树存在,Visit是对结点操作的应用函数 */ /* 操作结果:中序遍历T,对每个结点调用函数Visit一次且仅一次 */ VisitFunc=Visit; if(!BiTreeEmpty(T)) /* 树不空 */ InTraverse(T,0); printf("\n"); } void PostTraverse(SqBiTree T,int e) { /* PostOrderTraverse()调用 */ if(T[2*e+1]!=Nil) /* 左子树不空 */ PostTraverse(T,2*e+1); if(T[2*e+2]!=Nil) /* 右子树不空 */ PostTraverse(T,2*e+2); VisitFunc(T[e]); } void PostOrderTraverse(SqBiTree T,void(*Visit)(TElemType)) { /* 初始条件:二叉树T存在,Visit是对结点操作的应用函数 */ /* 操作结果:后序遍历T,对每个结点调用函数Visit一次且仅一次 */ VisitFunc=Visit; if(!BiTreeEmpty(T)) /* 树不空 */ PostTraverse(T,0); printf("\n"); } void LevelOrderTraverse(SqBiTree T,void(*Visit)(TElemType)) { /* 层序遍历二叉树 */ int i=MAX_TREE_SIZE-1,j; while(T[i]==Nil) i--; /* 找到最后一个非空结点的序号 */ for(j=0;j<=i;j++) /* 从根结点起,按层序遍历二叉树 */ if(T[j]!=Nil) Visit(T[j]); /* 只遍历非空的结点 */ printf("\n"); } <pre> void Print(SqBiTree T) { /* 逐层、按本层序号输出二叉树 */ int j,k; position p; TElemType e; for(j=1;j<=BiTreeDepth(T);j++) { printf("第%d层: ",j); for(k=1;k<=pow(2,j-1);k++) { p.level=j; p.order=k; e=Value(T,p); if(e!=Nil) printf("%d:"form" ",k,e); } printf("\n"); } } </pre>